BIOMIMETIC SYNTHESIS OF 12-OXY-PIMARANES FROM 12,13-EPOXY-LABDADIENES

Alejandro F Barrero^{*}, Rafael Quintana, M and Joaquín Altarejos C Departamento de Química Orgánica Facultad de Ciencias Universidad de Granada 18071 GRANADA (Spain)

(Received in UK 13 February 1991)

Abstract: Reactions of methyl 12,13-epoxy-cus-communates (3, 4) and methyl 12,13-epoxy-trans-communates (5, 6) with BF, etherate at 0°C are reported They occur in a stereoselective and stereospecific way yielding mainly C-12 oxygenated pimaranes When the reaction was carried out from 5 and 6 two tetracyclic ketones (17, 18) were also isolated Reaction mechanisms and stereochemical implications are discussed

Monoepoxides of polyenes are appropriate substrata in biomimetic syntheses of terpenoids and steroids¹ The oxirane ring basically plays two roles in these reactions (a) functionalization in a specific position of the molecule, and (b) provision of the required cation for achieving cyclization with a high stereochemical control,² by electrophilic opening In this paper we report the results of the opening reactions of methyl 12,13-epoxy-cis-communate (3, 4) and methyl 12,13-epoxy-trans-communate (5, 6) with BF, etherate Most products obtained in these processes are C-12 oxygenated pimaranes in addition to two tetracyclic ketones (17, 18), when epoxides 5 and 6 were used

METHODS AND RESULTS

Epoxidation of methyl cis-communate (1) was performed with m-CPBA in the selective conditions described by Pascual Teresa et al³ yielding, after chromatographic separation, a mixture of methyl (12R,13S)-12,13-epoxy-labda-8(17),14-dien-19-oate (3) and methyl (12S,13R)-12,13-epoxy-labda-8(17),14-dien-19-oate (4) (45% of the reaction products) ¹H-NMR of the mixture

shows the same signals for H-C₁₂ (δ 290, br t, J=6 Hz) and Me-C₁₃ (δ 136, s) in both isomers in accordance with a 12,13-oxirane The δ values of the exocyclic methylene ($\underline{3}$ δ 448, 486, $\underline{4}$ δ 475, 490) allowed to establish the stereochemistry of the lateral chain since conformational analysis around the C₁₃-C₁₂ bond justifies those differences observed in the chemical shifts (figure 1), the less hindranced <u>3A</u> and <u>4A</u> conformers should be preferred in a similar way as occurs for C-12 oxygenated labdanes⁴ and as deduced from the 11,12 coupling constants In this sense the proximity between H_{eato}-17 and oxygen in compound <u>4</u> justifies its deshielded δ value (475 ppm) in opposition to that in compound <u>3</u> (δ 448)

Epoxidation of methyl *trans*-communate (2) yielded a mixture of methyl (12R, 13R)- 12,13-epoxy-labda-8(17),14-dien-19-oate (5) and methyl (12S, 13S)-12,13-epoxy-labda-8(17), 14- dien-19-oate (6) The stereochemistry of the lateral chain in 5 and 6 was

determined in a similar fashion as for $\underline{3}$ and $\underline{4}$, taking into account the multiplicity and coupling constant for H-12 (2d, J=67 Hz for $\underline{5}$ and J=69 Hz for $\underline{6}$) as well as δ values for H-17 ($\underline{5}$ δ 444, 484, $\underline{6}$ δ 472, 489) in ¹H-NMR In accordance with these data, conformational analysis shows Δ conformers as those more probable for compound $\underline{5}$ and $\underline{6}$ (figure 2)

In both epoxidation reactions a certain stereoselectivity through the formation of 12R-isomers is observed. It should be related with the fact that the lateral chain of the starting products (1, 2) adopts a preferred conformation around the $C_9-C_{11}^{\ s}$ and $C_{11}-C_{12}^{\ s}$ bonds in order to minimize the interaction exerted by the bicyclic system (figure 3), allowing more easily the attack on the less hindered α side that leads to 12R-epoxides. This stereoselectivity is consistent with that described for photooxygenation⁷ and oxymercuration-demercuration⁸ reactions on 1 and 2

Figure 2

Figure 3

The oxirane ring opening reactions of methyl 12,13-epoxy-communates were carried out by treatments of mixtures of $\underline{3}$ and $\underline{4}$ with BF₃ etherate in benzene at 0°C Results of these reactions are collected in table 1

Table 1. Reaction of 3, 4 mixtures with BF₃ etherate

		1	8	2	10	11	12	13	14
R-1	3 (60%) 4 (40%)	2.3%	4 3x	14 7%	11.7%	4 3X	27 9 %	19%	1 0%
R-2	3 (70%) 4 (30%)	+	+	*	+				
R-3	<u>3</u> (30%) <u>4</u> (70%)	1.0%	17%	58%	30 7%	-	20 9 %	1 5%	08%
R-4	3 (5%) 4 (95%)				*		+		

* main reaction product, + minor reaction product

The opening of the oxirane ring followed by a $H_{1,2}$ rearrangement leads to compound <u>12</u>, and further Δ^{14} isomerization

and stereoselective $\Delta^{4(17)}$ hydration by the less hindered α side leads to 14 Compounds 13 (formed by ring opening and direct hydration) and 14 are minor products originated by the presence of traces of water in the reaction mixture. The rest of the products are the result of the cyclization process of the 8(17) double bond through C-13 position of the allyl cation originated in the oxirane opening Z has been described as a radicallary cyclization product in the oxymercuration-demercuration of methyl *trans*-communate (2)⁴⁹ Its isomer (8), detected in a mixture together to Z (65/35 ratio), shows similar ¹H-NMR spectrum to Z, having the same stereochemistry on C₈ and C₁₂ as Z since H-12 for both compounds has analogous splitting pattern (table 2) On the opposite, 8 possesses R-C₁₃ configuration deduced from the δ values in ¹³C-NMR for C₁₅ (deshielded) and C₁₇ (shielded) respect to those of Z, as a consequence of different γ -effects exerted by C₁₁ and the bridge oxygen (table 3)

	24	B	õs - õ7
Me-10	ō 0.67 (s)	ð 0 68 (s)	+0 01
Me-13	ō108(s)	õ109(s)	+0 01
Me-4	ō 1 17 (s)	ō 1 17 (s)	o
Me0-19	ō 3 59 (s)	ō 3 59 (s)	o
H-12	ō 3 83 (d, 5 5 Hz)	ð 3 92 (d, 5 8 Hz)	+0 09
H-15	δ 5 86 (dd, 18 7, 10 1 Hz)	ō 5 99 (dd, 17 8, 10 5 Hz)	+0 13
H-16	δ 5 00 (dd, 18 7, 1 2 Hz)	ō 4 88 (d, 10 5 Hz)	-0 12
H'-16	δ 5 01 (dd, 10 1, 1 2 Hz)	δ 4 89 (d, 17 8 Hz)	-0 12

Table 2 ¹H-NMR data of compounds 7 and 8

^{*}See reference 9

Table 3 ¹³C-NMR data of C₁₅ and C₁₇ for compounds 7 and 8

	1	ß	I (X-offects)	<u>8</u> (X-effects)
Cra	5 144 05	A 147 07	gauche (Cii)	gauche (0)
	0 144 05	0 147 37	trans (0)	trans (Cii)
C17	5 27 38	ā 21 09	gauche (0)	gauche (Cii)
2.7		0 21 08	trans (C11)	trans (0)

Structural elucidation of alcohols 9 and 10 posed the problem of the stereochemistry on C-12 and C-13 together to the ring C conformation The ¹H-NMR spectrum of 9 shows an H-12 signal at δ 3 57 (m, w_{1/2b} = 10.5 Hz, pseudoequatorial proton) whereas that of 10 is at δ 3 47 (dd, J₁=9 3 Hz, J₂=5 4 Hz, pseudoaxial proton) Furthermore, absolute configuration in C-12 for 9 and 10 was determined by the Horeau method¹⁰ as R and S, which indicates that both compounds present ¹²H₁₃ half-chair conformations (figure 4) The C₁₃ configurations for 9 and 10 were established by ¹H-NMR induced chemical shift studies with

Figure 4

pyridine-d₃ (table 4) and Eu(dpm)₅ (table 5) in both experiments for compound 9 H-15 is approximately two times more deshielded than H-17 indicating that hydroxyl and vinyl groups are in *cis* relative position (*R*-C₁₃). The same *cis* relative position is deduced for compound 10 since the pyridine induced chemical shift on H-15 is also two times greater than that of H-17 (*S*-C₁₃). On the contrary, the P values of H-15 and H-17 for 10 (table 5) are similar, in agreement with an α -pseudoequatorial position of HO-C₁₂ equidistant respect to both H-15 and H-17

н	2 (61, CDC12)	<u>9</u> (õz, Py~ds)	2 (ōz-ō1)	10 (51, CDC12)	<u>10</u> (52, Py~ds)	<u>10</u> (52-61)
12	3 57	3 87	+0 30	3 47	3 78	+0 30
15	5 88	6 38	+0 50	5 85	6 33	+Q 4B
16	5 08	5 13-5 24	+0 10	5 01	5 13	+0 12
16	5 10	5 13-5 24	+0 08	5 09	5 18	+0 09
17	0 93	1 15	+0 22	1 05	1 28	+0 23

Table 4 ¹H-NMR data in CDCl, and pyridine-d, for compounds 2 and 10

						· · //			
				M* (<u>9</u>)			P* (<u>g</u>)	H* (<u>10</u>)	P* (10)
н	0	0 023	0 046	0 078	0 120	0 205		0 0 189 0 337 0 566 0 727	
12	3 57	3 60	3 94	4 00	4 44	5 69	10 34	3 47 3 95 4 20 5 08 5 90	3 34
15	5 88	5 93	5 99	6 13	6 39	7 10	5 95	5 85 6 09 6 22 6 58 6 99	1 57
16	5 08	5 08	5 10	5 18	5 35	5 72	3 12	5 01 5 16 5 22 5 50 5 BC	1 09
16	5 10	5 10	5 12	5 15	5 25	5 45	1 70	5 09 5 20 5 27 5 48 5 60	0 70
17	0 93	0 95	0 98	1 06	1 21	1 62	3 37	1 05 1 25 1 38 1 73 2 11	1 46
18	1 20	1 20	1 20	1 20	1 25	1 33	0 63	1 16 1 19 1 20 1 25 1 31	0 21
20	0 80	0 80	0 80	0 80	0 89	1 00	0 98	075 077 080 083 088	0 18
MeO	3 62	3 63	3 6 3	3 63	3 66	3 70	0 39	3 59 3 63 3 63 3 68 3 73	0 19

Table 5. ¹H-NMR Eu(dpm), induced chemical shifts for compounds 2 and 10

*Eu(dpm)₃ compound molar ratio, *Europium shift parameter (ref 17)

Compounds 11 shows important differences for angular methyles in ¹H-NMR and carbons of A and B rings in ¹³C-NMR spectra respect to 2 and 10 (table 6) 11 should have a rosadiene structure according to the molecular formula deduced from the mass spectrum and δ in ¹H-NMR and ¹³C-NMR spectra Since ring C adopts a chair conformation and H-12 an equatorial position (deduced from ¹H-NMR data), the configuration on C₁₂ must be R On the other hand, the δ value of C₁₇ (24 16 ppm) (characteristic of axial methyles on cyclohexane¹¹) allows to assign R configuration for C₁₃

с	9	10	11		
5	53 36	53.43	127 00		
8	124.91	125 00	37 42		
9	132.08	134 13	37.28		
10	37 86	37 81	140.51		
12	72.51	74.51	74.21		
13	39 64	40.30	42.15		
15	144.86	140.75	146.46		
17	22.95	23 64	24.16		

Table 6. ¹³C-NMR data for compounds 2, 10 and 11

In order to complete the stereochemical study of the 12,13-oxirane ring opening of methyl 12,13-epoxy-communates, a reaction of a mixture of $\underline{5}$ (60%) and $\underline{6}$ (40%) with BF₃ etherate was carried out in the same conditions as for $\underline{3}$ and $\underline{4}$ This reaction yielded the following products $\underline{7}$ (4%), $\underline{9}$ (minor product), $\underline{15}$ (25%), $\underline{16}$ (63%), $\underline{12}$ (24%), $\underline{13a}$ (14%), $\underline{14}$ (08%), $\underline{17}$ (71%) and $\underline{18}$ (35%)

15 and 16 have been stereochemically characterized making reference to their stereoisomers 2 and 10 in basis to δ values for C₁₇ in ¹H-NMR (table 7) and ¹³C-NMR (table 9), located in pseudoequatorial and pseudoexial positions, respectively

н	2	10	15	19
12	3 57 (m wijzh=10 5 Hz)	3 47 (dd 9 3, 5 4 Hz)	3 55 (m, wijzn=11 Hz)	3 40-3 67 (m)
15	5 88 (dd, 18 0, 11 0 Hz)	5 85 (dd 17 5 10 9 Hz)	575 (dd., 1810 Hz)	5 77 (dd 18 10 Hz)
16	5 08 (dd 18 0 1 2 Hz)	5 01 (dd 17 6, 1 6 Hz)	5 00 (dd 18, 2 Hz)	5 09 (dd 18, 1 8 Hz)
16	5 10 (dd 11 0, 1 2 Hz)	5 09 (dd 10 9 1 6 Hz)	5 03 (dd 10, 2 Hz)	5 12 (dd 10 1 8 Hz)
17	(a) EE O	1 05 (s)	1 00 (5)	0 93 (s)

Table 7. ¹H-NMR data of H₁₂ and H₁₅-H₁₇ for compounds 2, 10, 15 and 16

Compound 17 shows molecular peak at m/z 332 ($C_{21}H_{32}O_3$) in MS and just two unsaturated carbons in the ¹³C-NMR spectrum corresponding to cyclohexanone (δ 216 67) and methylic ester (δ 177 68) The rest of spectroscopic data is consistent with the proposed structure, having performed 2D-NMR (¹H-¹H and one-bond ¹H-¹³C correlations) experiments to complete the ¹H-NMR (table 8) and ¹³C-NMR (table 9) assignments Some signals in the ¹H-NMR spectrum strongly support this structure. In particular, the δ values and multiplicities of H-1, H-3 and H-11b (table 8) may be only justified through the proposed tetracyclic ketone (figure 5). The mass spectrum also supports the existence of the cyclobutane ring since the base

н б	(multiplicity, Hz)	correlated hydrogens
1	2 37 (d, 8 8)	116
3	2 36 (q. 7 2)	Me-Cs (not 3a)
38	1 04-1 12 (m)	4, 51
4	1 79-1 87 (m)	51, 52, 3a
51	1 18-1 27 (m)	3a, 4, 5 ₂
52	2 10-2 24 (m)	4, 51
6a×*	1 29-1 43 (m)	6eq, 7, 7a
6eq=7ec	2 19-2 30 (m)	6ax, 7ax, 7a
7axª	1 58-1 70 (m)	6, 7eq, 7a
7a	1 80-1 86 (m)	6, 7
9ax	0 89-1 04 (m)	9eq, 3
9eq	2 10-2 19 (m)	9ax, 10, 11eq
10ax	1 33-1 49 (m)	10eg, 9, 11
10eq	1 68-1 82 (m)	9, 10ax, 11eq
11ax	0 80-0 92 (m)	10ax, 11eq
1160	1 45-1 60 (m)	9eq, 10, 11ax
116	1 52 (t, 8 8)	1
Me~C3	1 05 (d, 7 2)	3

a These values may be reserved

Figure 5 C11b-C1 and C3 C3a bond angles for compound 17

peak at m/z 121, typical of labdanes with alkoxy carbonyl group on C₄ and 8(17) double bond¹² as well as of alkoxycarbonyl pimaranes with $\Delta^{8(14)}$ unsaturation,¹³ indicates that the fragmentation pattern is directed by a double bond in those positions which can be only originated from the cyclobutane breakage in both directions (scheme 1) Furthermore the main fragmentations are justified through the radical-ion **1** being the same as for 12

Compound <u>18</u> could not be resolved from <u>17</u> However, the studies of ¹H and ¹³C-NMR spectra and 2D-NMR experiments (table 10) allowed to identify <u>18</u> as methyl 12-oxo-beveran-19-oate

DISCUSSION

A different behaviour in the electrophilic oxirane opening reactions is observed depending on the stereochemistry of the 12,13-epoxides used, according to the skeleton types originated in these reactions Although the product of $H_{1,2}$ rearrangement (12) represents about a 25% in reactions from either 12,13-epoxy-cis-communates or 12,13-epoxy-trans-communates, the relative ratio of cyclization products versus 12 is 25% higher in reaction from cis-isomers in addition, 12,13-epoxy-trans-communates show a different cyclization pattern to tetracyclic ketones 17 and 18, which represents a 10%

Scheme 1 Main fragmentations observed in the MS of compound 17

Table 9 ¹³C-NMR data^{*} for compounds <u>3-12</u> and <u>14-18</u>

с	3		4	Ł		5	9	2	2	Z	l	3	:	9	10	2
1	39 2	6	38	98	39	01	39	28	41	49	41	68	39	96	36	62
2	19 9	Ď	19	87	19	82	19	87	18	73	18	75	19	50	19	39
3	38 1	4	38	13	38	09	38	09	38	28	38	27	37	74	37	62
4	44 2	6	44	25	44	21	44	21	43	86	43	86	43	86	43	71
5	56 1	5	56	08	56	03	56	12	54	61	54	60	53	36	53	43
6	26 0	1	26	04	25	98	25	98	20	79	20	78	20	61	20	49
7	38 5	1	38	41	38	35	38	44	32	20	32	80	33	03	32	36
8	147 8	0	148	33	148	25	147	53	85	58	85	44	124	91	125	00
9	53 8	6	53	78	53	69	54	09	55	47	56	04	132	08	134	13
10	40 0	7	40	01	39	89	40	08	36	61	36	70	37	86	37	81
11	23 3	4	22	80	23	. 22	23	72	26	91	26	16	28	96	30	89
12	65 4	4	65	43	64	59	64	68	84	22	84	22	72	51	74	51
13	60 4	6	61	20	60	04	59	43	48	31	46	31	39	64	40	30
14	136 3	1	136	54	140	88	140	98	50	08	52	33	37	39	42	53
15	117 A	1	117	66	115	53	115	. 53	144	05	147	97	144	86	140	75
16	21 4	ò	21	36	15	37	15	00	113	03	109	86	113	26	114	42
17	107 5	3	106	83	106	80	107	73	27	38	21	08	22	95	23	64
18	28 7	7	28	76	28	73	28	73	28	80	28	81	2 B	36	28	29
19	177 5	B	177	63	177	58	177	50	177	92	177	91	177	97	177	89
20	12 3	8	12	62	12	59	12	40	14	75	14	93	17	13	17	05
Me0	51 1	3	51	09	51	08	51	08	51	09	51	09	51	09	51	02

с	11	12	14	15	<u>16</u>	17	18
1	25 26	39 14	39 43	36 82	35 64	38 58 (C-11)	38 35
2	19 98	19 78	18 95	19 48	19 43	18 80 (C-10)	19 497
3	36 48	37 92	37 79	37 67	37 66	37 91 (C-9)	37 91
4	46 88	44 19	43 84	43 84	43 75	43 77 (C-8)	44 32
5	127 00	55 92	55 19°	53 27	53 20	49 62 (C-7a)	53 67
6	27 15	25 72	22 22	20 52	20 57	26 05 (C-7)ª	19 98"
7	24 59	38 07	44 70	32 85	32 48	24 61 (C-8)ª	20 57
8	37 42	148 47	72 79	125 22	124 73	40 97 (C-5a)*	45 52
		148 83					
9	37 28	50 01	56 47°	132 71	133 88	52 79 (C-11b)	48 88
		50 19					
10	140 51	39 37	38 99	37 85	37 92	38 58 (C-11a)*	40 09
11	36 89	37 08	32 79	29 39	28 62	36 54 (C-1)	33 03
		37 26					
12	74 21	210 28	202 73	72 50	72 16	216 67 (C-2)	222 50
13	42 15	50 97	138 29	40.20	40 86	49 37 (C-3)	49 02
		51 76					
14	32 96	137 83	136 61	39 31	43 28	56 61 (C-3a)	43 34
		137 97					
15	146 46	116.54	11 53	144 88	146 30	20 64 (C-4)	27 56
		116 67					
16	114 20	15 88	14 76	112 90	114 54	41 13 (C-5)	24 OB
		16 00					
17	24 16 ^b	105.88	22 75	20 52	14 04	16 95 (Me-Cs)	21 11
		106 29					
18	24 40 ^b	28 64	28 66	28 36	28 35	28 67 (Me-Ca)	29 30
19	178 29	177 43	177 63	177 99	177 95	177 68 (MeOO <u>C</u> -Cs)	178 02
20	20 64	12 81	13 31	17 25	17 08	12 45 (Me-Ciia)	13 46
MeO	51 75	51 11	51 18	51 12	51 10	51 15 (H3 <u>C</u> -OOC-Cs)	51 15
						_	

Table 9 (continuation)

^a The spectra were run at 75 MHz (except <u>12</u>, at 20 MHz) in CDCl₃ δ values are given in ppm downfield from TMS

^{br}Values bearing the same superscript may be interchanged

Table 10. ¹H-NMR data for compound <u>18</u> and correlations between protons deduced from 2D-NMR experiments

1ax	0 95-1 06 (m)	1eg 2 3eg 20
ieq	1 65-1 77 (m)	1ax 2 3
2a×	1 40-1 51 (m)	2eq 1 3
2eq	1 72-1 81 (m)	2ax iax 3
3a×	0 92-1 02 (m)	3eq 2 1eq
3eq	2 11-2 22 (m)	3ax 2 1
5	1 29 (br d 18)	6
60	1 65-1 79 (m)	6a 5 7
60	1 88-1 99 (m)	6 B , 5 7
7	1 81-1 92 (m)	6
110	1 72-1 82 (m)	118
110	2 11-2 22 (m)	11a
14a B	1 83-1 97 (m)	•

H δ (multiplicity; Hz) correlated hydrogens

The proposed formation mechanisms for the products of these reactions are summarized in scheme 2 Compounds 3 and 4 originate cyclizations through route b only, whereas their isomers 5 and 6 do it through route c as well. Since the opening of the oxirane ring is accomplished by breaking of the C_{13} -O bond, the tricyclic compounds formed ought to retain the C_{12} configuration of the oxiranes of which they come from (7 and 8 are necessarily originated from 3). In this sense,

the stereochemical aspects of these processes have been clarified by the reactions performed with 4 (95% of purity), which yielded compound <u>10</u> (12-S) almost exclusively, and by that performed on a mixture of 3 (70%) and 4 (30%), which basically led to 2 (12-R) The chirality on C₁₃ for compounds 2 and <u>10</u> evidences that the original orientation of the sustituents on C₁₃ (in compounds 3 and 4, respectively) is quite kept. This has also noted in a large-scale reactions from a mixture of 3 (60%) and 4 (40%) (R-1 in experimental section) where compound 8 was predominantly formed as opposed to 7 (65% of 8 versus 35%

of 2) This means that it is a stereoselective and stereospecific process in which the ring opening and cyclization of $\Delta^{8(17)}$ to the allyl cation II (scheme 2) must be quite synchronic, giving the tertiary cation III that evolves in three different ways (scheme 3), being well-known that leads to 11.¹⁴

The reaction of \S and \S with BF, etherate shows similar cyclization to pimaranes, although a higher stereoselectivity is observed as deduced from the sole isolation of epoxide 7 (originated in this case from \$). This fact may be justified by the larger stability of allyl cation <u>IVa</u> (intermediate from \$ that leads to 7) than that of <u>IVb</u>, which yields its C₁₃ epimer \$ (figure 6), because of the interaction between the π -8(17) orbitals and the empty orbital of the allyl cation (in <u>IVa</u>). Thus, the transition

state geometry remains unchanged after the opening of the oxirane ring from 5 On the other hand, from the opening of epoxide 3, the geometry of the resulting allyl cation is the less stable that may lead to a partial epimerization on C_{13}

In relation to the formation of the tetracyclic ketones 17 and 18 the mechanism leading to the eight-member ring is what establishes the difference of the reaction from 5 and 6 respect to that from 3 and 4 Assuming that the oxirane ring opening and the cyclization are synchronic processes, the generation of the eight-members ring from 3 and 4 is not possible as a consequence of the lateral chain inflexibility that keeps C_{15} away from the 8(17) double bond On the opposite, the

stereochemistry of the oxiranes from methyl *trans*-communate does allow this cyclization pattern (figure 7) Furthermore the evolution of cationic intermediates is different and it depends on the stereochemistry of starting epoxide, from $\underline{6}$ the formation of the cyclobutane takes place stereospecifically through the side α because of steric hindrances of Me-C₁₀ (scheme 4) Finally, the 1,2-hydride rearrangement of H-12 β leads to <u>17</u>

When the starting epoxide is 5 the tetracyclic carbenium \underline{V} suffers a four-member ring expansion to hybanil cation VI which is stabilized by a H₁₃ rearrangement of H-12 α , the only hydrogen with appropriate stereochemistry to migrate (scheme 5) ¹⁵ From these considerations it can be finally deduced that ketones <u>17</u> and <u>18</u> are stereospecifically generated from each methyl 12,13-epoxy-*trans*-communate

EXPERIMENTAL

Melting points were determined using a Reichert type Kofler microscope and are uncorrected Optical rotations have been determined on a Perkin-Elmer Model 141 polarimeter, using CHCl₃ as solvent (the concentration was of 10 mg/mL) UV spectra were recorded in MeOH on a UV-Vis Bausch-lamb model spectronic 2000 spectrometer and IR spectra on a Perkin-Elmer Model 983G spectrometer with samples between sodium chloride plates or as potassium bromide pellets ¹H-NMR spectra were recorded on Bruker WP 80 SY (80 MHz) and Bruker AM 300 (300 MHz) spectrometers using TMS or CHCl₃ as standard and CDCl₃ as solvent ¹³C-NMR spectra were run at 75 MHz and 20 MHz on Bruker AM 300 and Bruker WP 80 SY instruments 2D-NMR (¹H-¹H and one-bond ¹H-¹³C correlations) experiments were performed on a Bruker AM 300 spectrometer MS spectra were obtained on a Hewlett-Packard 5988A mass spectrometer using an ionizing voltage of 70 eV Chromatographic separations were carried out by conventional column on Merck silica gel 60 (70-230 mesh) and by flash column on Merck silica gel 60 (230-400 mesh) using eluents of increasing polarity from hexane to diethyl ether Analytical TLC was performed on 0.25 mm thick layers of Merck silica gel 60G using a 7% phosphomolybdic acid solution (in ethanol) to develop the spots Preparative TLC was carried out on 1.00 mm thick layers of Merck silica gel 60 PF₂₅₄ gipshalting visualizing the bands with a 254 nm ultraviolet light Mixtures of compounds with a similar Rf in TLC were column chromatographed on 20% AgNO₃/silica gel

Isolation of methyl cis-(1) and trans-communate (2)

1 and 2 were obtained from the acidic fraction (previously sterefied with diazomethane in Et_2O) of the hexane extract of berries of Juniperus communis L¹⁶

Epoxidation of methyl cus-communate (1)

To a stirred solution of 1 (100 g, 3.16 mmol) in CH₂Cl₂ (100 mL), a solution of *m*-CPBA (0.59 g, 3.41 mmol) in CH₂Cl₂ (120 mL) was added dropwise in 2h at room temperature An aqueous solution of 10% Na₂SO₃ (12.5 mL) was added After adding 35.5 mL of saturated NaHCO₃ solution, the reaction mixture was extracted with CHCl₃, washed with water and dried over Na₂SO₄ After removal of the solvent, the residue (1.02 g) was column chromatographed on silica gel yielding the following fractions (a) 20 mg (eluted with hexane-Et₂O 99 1) of a mixture of 4 (30%) and methyl (12R,13S)-12,13-epoxy-labda-8(17),14-dien-19-oate (3) (70%), [α]_p + 61.0°, ¹H-NMR (80 MHz) δ 0.50 (s, Me-10), 1.18 (s, Me-4), 1.36 (s, Me-13), 2.90 (br t, J=6)

Hz, H-12), 3 60 (s, MeO-19), 4 48 (br s, H-17), 4 86 (br s, H'-17), 5 13-5 46 (m, H-15), 5 82 (dd, $J_1 = 18$ Hz, $J_2 = 10$ Hz, H-14), ¹³C-NMR in table 9, EIMS m/z (rel int) 332 (M⁺, 1), 317 (M⁺-CH₃, 1), 273 (M⁺-COOMe, 2), 249 (M⁺-C₃H₄0, 1), 189 (249⁺-HCOOMe, 14), 161 (16), 133 (20), 121 (100), 93 (48), 83 (C₃H₄0⁺, 21), 79 (60), 55 (76) (b) 250 mg (eluted with hexane-Et₂O 98 2) of a mixture of **3** (60%) and **4** (40%) (c) 160 mg (eluted with hexane-Et₂O 97 3) of a mixture of **3** (30%) and **4** (70%) (d) 43 mg (eluted with hexane-Et₂O 96 4) of methyl (12S,13R)-12,13-epoxy-labda-8(17),14-dien-19-oate (4) $[\alpha]_D$ + 36 0°, IR (KBr) v 3085, 1646, 990, 927 (CH=CH₂), 3085, 1646, 890 (C=CH₂), 1728, 1230, 1155 (COOMe), ¹H-NMR (80 MHz) δ 0 50 (s, Me-10), 1 18 (s, Me-4), 1.36 (s, Me-13), 2 90 (br t, J=6 Hz-12), 3 60 (s, MeO-19), 4 75 (br s, H-17), 4 90 (br s, H'-17), 5 13-5 46 (m, H-15), 5 80 (dd, J_1 =18 Hz, J_2 =10 Hz, H-14), ¹³C-NMR in table 9

Reaction of a mixture of 3 (60%) and 4 (40%) with BF₃:etherate. (R-1)

To a solution of a mixture of 3 and 4 (315 g, 947 mmol) in dry benzene (260 mL) under N₂ atmosphere, 2.60 mL (21 mmol) of BF₃ etherate was added at 0°C After sturing for 12 min the reaction mixture was poured onto a 5% NaHCO₃ solution (1300 mL) and extracted with Et₂O (3x100 mL) The organic layer was washed with water and dried over Na₂SO₄ After removal of the solvent the residue (277 g) was flash column chromatographed on silica gel (120 mg) yielding the following compounds

Methyl 12-oxo-labda-8(17),14-dien-19-oate (12) 613 mg eluted with hexane-Et₂O 96 4, oil $[\alpha]_{D}$ +31 6°, IR (neat) v 3079, 1642, 990, 920 (CH=CH₂), 3079, 1642, 884 (C=CH₂), 1721 (C=O), 1721, 1228, 1154 (COOMe), ¹H-NMR (80 MHz) δ 0 53 (s, Me-10), 1 16 (d, J=7 Hz, Me-13), 1 20 (s, Me-4), 3 05-3 47 (m, H-13), 3 62 (s, MeO-19), 4 31 (br s, H-17), 4 74 (br s, H'-17), 5 14 (br d, J=10 Hz, H-15), 5 17 (br d, J=17 Hz, H'-15), 5 58-6 08 (m, H-14), ¹H-NMR (80 MHz, double resonance) irradiated hydrogen [affected hydrogens] H-13 [Me-13 and H-14 (dd, J₁=17 Hz, J₂=10 Hz)], ¹³C-NMR in table 9, EIMS m/z (rel int) 332 (M⁺, 25), 277 (M⁺-C₄H₇, 59), 272 (13), 249 (M⁺-C₃H₇O, 34), 235 (249⁺-CH₂, 27), 234 (36), 217 (M⁺-C₄H₇-HCOOMe, 100), 189 (43), 175 (28), 121 (82), 109 (51), 91 (30), 81 (32)

Methyl (8R,12R)-8,12-epoxy-pimar-15-en-19-oate (8) and methyl (8R,12R)-8,12-epoxy-isopimar-15-en-19-oate (7). 144 mg of a mixture of § (65%) and 7 (35%) eluted with hexane-Et₂O 92 8, oil $[\alpha]_{D}$ +60 3°, IR (neat) v 3083, 1636, 996, 911 (CH=CH₂), 1729, 1232, 1191, 1156 (COOMe), 1094, 1041 (C-0-C), ¹H-NMR (300 MHz) for both compounds in table 2, ¹³C-NMR for both compounds in table 9, EIMS m/z (rel int) 332 (M⁺, 37), 317 (M⁺-CH₃, 100), 273 (M⁺-COOMe, 7), 263 (10), 257 (M⁺-CH₃-HCOOMe, 4), 223 (11), 163 (13), 121 (26), 109 (31), 81 (27), 79 (26), 55 (26)

Methyl (12R,13S)-12-hydroxy-rosa-5(10),15-dien-19-oate (11). 50 mg cluted with hexane-Et₂O 85 15, oil $[\alpha]_D + 735^\circ$, IR (neat) v 3526, 1037 (OH), 3080, 1636, 911 (CH=CH₂), 1730, 1238, 1192, 1162 (COOMe), ¹H-NMR (300 MHz) δ 1 05 (s, Me-13), 1 14 (s, Me-4), 1 24 (s, Me-9), 3 60 (m, w_{1/2b}=9 Hz, H-12), 3 62 (s, MeO-19), 5 15 (dd, J₁=176 Hz, J₂=1.3 Hz, H-16), 5 18 (dd, J₁=109 Hz, J₂=1 3 Hz, H'-16), 5 85 (dd, J₁=176 Hz, J₂=109 Hz, H-15), ¹³C-NMR in table 9, EIMS m/z (rel int) 332 (M⁺, 8), 273 (M⁺-COOMe, 29), 255 (M⁺-COOMe-H₂O, 18), 245 (M⁺-COOMe-C₂H₄, 15), 161 (M⁺-COOMe-C₇H₁₂O, 39), 131 (31), 121 (32), 105 (58), 85 (20), 91 (69), 79 (60), 67 (69), 59 (76), 55 (100), 41 (95)

Methyl (12*R*)-12-hydroxy-pimara-8,15-dien-19-oate (9). 229 mg eluted with hexane-Et₂O 75 25, oil $[\alpha]_{D}$ +84 2°, IR (neat) v 3472, 1058 (OH), 3082, 1640, 910 (CH=CH₂), 1730, 1231, 1195, 1163 (COOMe), ¹H-NMR (300 MHz) δ 0 80 (s, Me-10), 0 93 (s, Me-13), 1 20 (s, Me-4), 3 57 (m, w_{1/2b}=10 5 Hz, H-12), 3 62 (s, MeO-19), 5 08 (dd, J₁=18 0 Hz, J₂=1 2 Hz, H-16), 5 10 (dd, J₁=11 0 Hz, J₂=1 2 Hz, H'-16), 5 88 (dd, J₁=18 0 Hz, J₂=11 0 Hz, H-15), ¹H-NMR (300 MHz, pyridine-d₅) δ 0.89 (s, Me-10), 1 15 (s, Me-13), 1 20 (s, Me-4), 3 58 (s, MeO-19), 3 87 (br d, J=6 0 Hz, H-12), 5 13-5 24 (m, H-16), 5 76 (d, J=6 Hz, HO-12), 6 38 (dd, J_1 =18 0 Hz, J_2 =11 0 Hz, H-15), ¹H-NMR (300 MHz, pyridine-d₂, double resonance) irradiated hydrogens [affected hydrogens] HO-12 [H-12 (t, J=47 Hz)] H-12 [HO-12 (s) and H-11 (located around 2 25 ppm)], H-11 [H-12 (d, J=6 Hz)], ¹H-NMR (80 MHz, CDCl₃, Eu(dpm)₃) in table 5, ¹³C-NMR in table 9, EIMS m/z (rel int) 332 (M⁺, 38), 317 (M⁺-CH₃, 31), 314 (M⁺-H₂O, 19), 299 (M⁺-H₂O-CH₃, 77), 287 (M⁺-H₂O-C₂H₃, 3), 273 (M⁺-COOMe, 19), 272 (M⁺-HCOOMe, 15), 255 (M⁺-COOMe-H₂O, 21), 254 (M⁺-HCOOMe-H₂O, 10), 240 (255⁺-CH₃, 24), 239 (254⁺-CH₃, 100), 213 (240⁺-C₂H₃, 8), 212 (239⁺-C₂H₃, 5), 199 (13), 183 (24), 173 (27), 167 (22), 164 (C₁₁H₁₆O⁺, 3), 149 (164⁺-CH₃, 70), 146 (164⁺-H₂O, 12), 131 (149⁺-H₂O, 38), 117 (30), 109 (12), 105 (45), 93 (25), 91 (61), 84 (50), 59 (64), 55 (75), *R* configuration in C-12 was established by the "Horeau method"¹⁰ with an optical rotation of +0 143° and an optical yield of 12.3%

Methyl (12*R*)-12-acetoxy-13-hydroxy-labda-8(17),14-dien-19-oate (13b). 145 mg of a mxture of 13a (50%) and 14 (50%), eluted with hexane-Et₂O 1 1, were acetylated with Ac₂O/pyridine and chromatographed on silica gel obtaining 42 mg of 13b (hexane-Et₂O 7 3), oil $[\alpha]_{\rm D}$ +23 4°, IR (neat) v 3498, 1034 (OH), 3080, 1660, 892 (C=CH₂), 3080, 1647, 926 (CH=CH₂), 1727, 1242, (AcO), 1727, 1242, 1154 (COOMe), ¹H-NMR (80 MHz) δ 0 47 (s, Me-10), 1 15 (s, Me-4), 1.23 (s, Me-13), 2 08 (s, AcO-12), 3.58 (s, MeO-19), 4 48 (br s, H-17), 4 86 (br s, H'-17), 4 93 (t, J=5 Hz, H-12), 5 18 (dd, J₁=10 Hz, J₂=2 Hz, H-15), 5 31 (dd, J₁=16 Hz, J₂=2 Hz, H'-15), 5 92 (dd, J₁=16 Hz, J₂=10 Hz, H-14), EIMS m/z (rel int) 332 (M⁺-AcOH, 3), 314 (M⁺-AcOH-H₂O, 3), 272 (M⁺-AcOH-HCOOMe, 2), 255 (314⁺-COOMe, 4), 254 (314⁺-HCOOMe, 2), 201 (11), 161 (11), 121 (56), 93 (24), 81 (23), 71 (39), 55 (31), 43 (100)

Methyl 8 α -hydroxy-12-oxo-labd-13-*E*-en-19-oate (14). 23 mg of 14 were column purified (hexane-Et₂O 65 35) from a mixture of 13b and 14, oil. [α]_D +40 1°, UV (MeOH) λ max. 222 nm (ϵ 1500), IR (neat) v 3480 (OH), 3020, 1640 (C=CH), 1664 (α , β -unsaturated carbonyl), 1728, 1235, 1191, 1153 (COOMe), ¹H-NMR (80 MHz) δ 0 64 (s, Me-10), 1 10 (s, Me-8), 1 16 (s, Me-4), 1 78 (br s, Me-13), 1 84 (br d, J=7 Hz, Me-14), 2.56 (dd, J₁=19 Hz, J₂=4 Hz, H-11), 2 85 (dd, J₁=19 Hz, J₂=4 Hz, H'-11), 3 60 (s, MeO-19), 6 79 (br q, J=5 Hz, H-14), ¹³C-NMR in table 9, EIMS m/z (rel int) 350 (M⁺, 3), 335 (M⁺-CH₃, 1), 332 (M⁺-H₂O, 3), 317 (M⁺-H₂O-CH₃, 2), 289 (8), 373 (2), 235 (5), 205 (11), 179 (17), 175 (9), 121 (15), 83 (C₃H₇O⁺, 79), 78 (81), 63 (100), 55 (55)

Reaction of a mixture of 3 (70%) and 4 (30%) with BF₃:etherate (R-2)

146 mg (0 44 mmol) of an oxirane mixture enriched in compound $\frac{2}{2}$ (70%) were treated in identical conditions to those of R-1 reaction yielding 180 mg of a reaction crude which ¹H-NMR spectrum basically showed signals of compound $\frac{2}{2}$ being also able to detect compounds $\frac{7}{2}$, $\frac{8}{2}$ and $\frac{10}{2}$

Reaction of a mixture of 3 (30%) and 4 (70%) with BF3:etherate. (R-3)

In identical conditions to those of R-1 reaction 2 g (6 33 mmol) of an oxirane mixture enriched in compound 4 were treated obtaining 194 g of reaction crude that by flash column chromatography over silica gel yielded 12 (398 mg, hexane-Et₂O 96 4), 51 mg of a mixture of 7 (40%) and 8 (60%) eluted with hexane-Et₂O 94 6, 10 (509 mg, hexane-Et₂O 91 9), 2 (69 mg, hexane-Et₂O 88 12), 73 mg of a mixture of 14 (40%) and the C-12 epimer of compound 13 (60%) eluted with hexane-Et₂O 4 1

Methyl (125)-12-hydroxy-isopimar-8,15-dien-19-oate (10). Oil $[\alpha]_D$ +62.7°, IR (neat) v 3500, 1057 (OH), 3086, 1644, 922 (CH=CH₂), 1729, 1232, 1199, 1165 (COOMe); ¹H-NMR (300 MHz) δ 0 75 (s, Me-10), 1 05 (s, Me-13), 1 16 (s, Me-4), 3 47 (dd, J₁=9.3 Hz, J₂=5.4 Hz, H-12), 3 59 (s, MeO-19), 5 01 (dd, J₁=17.6 Hz, J₂=1.6 Hz, H-16), 5 09 (dd, J₁=10.9 Hz, J₂=1.6 Hz, H_12), 3 Hz, H_22 Hz, H_12 Hz, H_12

Hz, H'-16), 5 85 (dd, $J_1 = 17.6$ Hz, $J_2 = 10.9$ Hz, H-15), ¹H-NMR (80 MHz, pyrulme-d₅) $\delta 0.85$ (s, Me-10), 1 16 (s, Me-4), 1 28 (s, Me-13), 3.59 (s, MeO-19), 3 78 (br dd, $J_1 = 9$ Hz, $J_2 = 5$ Hz, H-12), 5 13 (dd, $J_1 = 18$ Hz, $J_2 = 2$ Hz, H-16), 5 18 (dd, $J_1 = 11$ Hz, $J_2 = 2$ Hz, H'-16), 6 33 (dd, $J_1 = 18$ Hz, $J_2 = 11$ Hz, H-15), ¹H-NMR (80 MHz, CDCl₃, Eu(dpm)₃) in table 5, ¹³C-NMR in table 9, 2D-NMR experiments in table 10, EIMS m/z (rel int) 332 (M⁺, 3), 317 (2), 314 (1), 299 (5), 273 (3), 272 (3), 255 (3), 240 (2), 239 (9), 213 (2), 199 (4), 183 (5), 173 (5), 159 (6), 149 (50), 86 (61), 84 (100), 47 (19), S configuration in C-12 was established by the " Horeau method¹⁶ with an optical rotation of -0.093° and an optical yield of 24.7%

Reaction of 4 with BF, etherate. (R-4)

The reaction of 4 (87 mg, 0.26 mmol) with BF₃ etherate was carried out in the same conditions that above in R-1 reaction yielding 119 mg of crude which ¹H-NMR spectrum showed signals from compounds 10 (major) and 12 (minor)

Epoxidation of methyl trans-communate (2).

2 54 g (8 05 mmol) of 2 were epoxedized in identical conditions as for compound 1 (see above) obtaining 3 g of reaction crude that by column chromatography yielded (hexane-Et₂O 98 2) 1 08 g of a mixture of methyl (12R,13R)-12,13-epoxy-labda-8(17),14-dien-19-oate (\mathfrak{S}) (60%) and methyl (12S,13S)-12,13-epoxy-labda-8(17),14-dien-19-oate (\mathfrak{G}) (40%) [α]_D +40 3°, IR (neat) v 3085, 1647, 990, 915 (CH=CH₂), 3085, 1647, 890 (C=CH₂), 1725, 1233, 1150 (COOMe), ¹H-NMR (300 MHz) (a) for compound \mathfrak{L} δ 0 48 (s, Me-10), 1 16 (s, Me-4), 1 37 (s, Me-13), 2 78 (d, J=6 7 Hz, H-12), 3 58 (s, MeO-19), 4 44 (br s, H-17), 4 84 (br s, H'-17), 5 11 (br d, J=10 7 Hz, H-15), 5 25 (br d, J=17 4 Hz, H'-15), 5 59 (dd, J₁=10 7 Hz, J₂=17 4 Hz, H-14), (b) for compound \mathfrak{L} δ 0 49 (s, Me-10), 1 16 (s, Me-4), 1 37 (s, Me-13), 2 77 (d, J=6 9 Hz, H-12), 3 58 (s, MeO-19), 4 72 (br s, H-17), 4 89 (br s, H'-17), 5 11 (br d, J=10 7 Hz, H-15), 5 25 (br d, J=17 4 Hz, H'-15), 5 58 (dd, J₁=10 7 Hz, J₂=17 4 Hz, H-14), ¹³C-NMR for compounds \mathfrak{L} and \mathfrak{L} in table 9, EIMS m/z (rel int) 332 (M⁺, 1), 273 (2), 189 (6), 181 (4), 133 (12), 121 (84), 79 (100), 55 (87)

Reaction of a mixture of 5 (60%) and 6 (40%) with BF₃, etherate. (R-5)

The reaction of 5 and 6 (1 g, 3 01 mmol) with BF₃ etherate was performed as above (reaction final time 30 min) obtaining 935 mg of crude that by flash column chromatography on silica gel yielded <u>12</u> (224 mg, hexane-Et₂O 97 3), 7 (37 mg, hexane-Et₂O 95 5), 100 mg of a mixture of <u>17</u> (70%) and <u>18</u> (30%) eluted with hexane-Et₂O 93 7, <u>16</u> (59 mg, hexane-Et₂O 85 15), 32 mg of a mixture of <u>2</u> (25%) and <u>15</u> (75%) eluted with hexane-Et₂O 7 3, 35 mg of a mixture of <u>13a</u> (60%) and <u>14</u> (40%) eluted with Et₂O

(3R,3aR,5aS,7aR,8S,11aR,11bR)-3,8,11a-trimethyl-8-methoxycarbonyl-2-oxo-perhydrocyclobutan [J] phenanthrene(17) andmethyl 12-oxo-beyeran-19-oate (18). Mp 95-100°C (MeOH), $[\alpha]_D$ + 50 2°, IR (KBr) v 1717 (CO), 1717, 1232, 1193, 1150 (COOMe), ¹H-NMR (300 MHz) (a) for compound 17 δ 0 55 (s, Me-11a), 1 05 (d, J = 7 2 Hz, Me-3), 1 15 (s, Me-8), 3 62 (s, MeO-), (b) for compound 18 δ 0 78 (s, Me-10), 0 99 (s, Me-13), 1 15 (s, Me-4), 3 62 (s, MeO-19), ¹³C-NMR for compound 17 and 18 in table 9, 2D-NMR experiments in table 8, EIMS m/z (rel int) 332 (M⁺, 22), 304 (22), 289 (9), 278 (6), 277 (27), 273 (21), 272 (16), 249 (19), 245 (8), 235 (17), 234 (22), 217 (38), 189 (19), 181 (17), 175 (15), 123 (31), 121 (100), 109 (48), 81 (41), 55 (66) Methyl (12S)-12-hydroxy-pimara-8,15-dien-19-oate (16). Oil $[\alpha]_D$ + 52 3°, IR (neat) v 3434, 1057 (OH), 3078, 1638, 1005, 913 (CH=CH₂), 1665 (C=C), 1721, 1232, 1194, 1160 (COOMe), ¹H-NMR (80 MHz) δ 0 81 (s, Me-10), 0 93 (s, Me-13), 1 20 (s, Me-4), 3 40-3 67 (m, H-12), 3 62 (s, MeO-19), 5 09 (dd, J₁=18 Hz, J₂=1 8 Hz, H-16), 5 12 (dd, J₁=10 Hz, J₂=1 8 Hz, H'-16), 5 77 (dd, $J_1 = 18$ Hz, $J_2 = 10$ Hz, H-15), ¹³C-NMR in table 9

Methyl (12*R*)-12-hydroxy-isopimara-8,15-dien-19-oate (15). Oil $[\alpha]_{D}$ +97 5°, IR (neat) v 3463, 1056 (OH), 3084, 1641, 911 (CH=CH₂), 1729, 1231, 1195, 1163 (COOMe), ¹H-NMR (80 MHz) δ 0 80 (s, Me-10), 1 00 (s, Me-13), 1 20 (s, Me-4), 3 55 (m, w_{1/2h}=11 Hz, H-12), 3 63 (s, Me-19), 5 00 (dd, J₁=18 Hz, J₂=2 Hz, H-16), 5 03 (dd, J₁=10 Hz, J₂=2 Hz, H'-16), 5 75 (dd, J₁=18 Hz, J₂=10 Hz, H-15), ¹H-NMR (80 MHz, pyridine-d₅) δ 0 92 (s, Me-10), 1 22 (s, Me-4), 1 30 (s, Me-13), 3 57 (s, MeO-19), 3 90 (m, w_{1/2h}=11 Hz, H-12), 5 00-5 32 (m, H-16), 6 05 (dd, J₁=18 Hz, J₂=10 Hz, H-15), ¹³C-NMR in table 9, EIMS m/z (rel int) 332 (M⁺, 21), 317 (10), 314 (14), 299 (52), 273 (19), 272 (17), 255 (14), 254 (6), 240 (19), 239 (95), 213 (5), 199 (11), 185 (17), 183 (27), 173 (24), 164 (3), 159 (25), 157 (24), 147 (33), 131 (45), 121 (35), 105 (64), 93 (40), 91 (84), 79 (58), 55 (100)

ACKNOWLEDGEMENTS

We wish to thank the receipt of financial assistance from the Junta de Andalucía

REFERENCES

- 1. Van Tamelen, EE and Anderson, R.J., J Am Chem Soc 1972, 94, 8225
- 2. Van Tamelen, E E and Marson, S.A., J Am Chem Soc 1975, 97, 5614
- 3. Pascual Teresa, J de, San Feliciano, A, Miguel del Corral, JM and Barrero, AF, Studia Chemica 1984, IX, 255
- 4. Bell, R.A., Gravestock, V and Tagouchi, Y., Can J Chem 1975, 53, 2869
- 5. Buckwalter, BL, Burfitt, IR, Nagel, A.A, Wenkert, E and Naf, F, Helv Chum Acta 1975, 58, 1567
- 6. Turner, J.A and Herz, W, J Org Chem 1977, 42, 1900
- 7. Pascual Teresa, J de, Mateos, AF, Barrero, AF and Pollos, P, Studia Chemica 1984, IX, 49
- 8. Barrero, A F, Sánchez, J F and Altarejos, J, unpublished results
- 9 Barrero, A F, Sánchez, J F and Altarejos, J, Tetrahedron Lett 1988, 29, 3713
- 10 (a) Horeau, A, Tetrahedron Lett 1961, 15, 506 (b) Horeau, A and Kagan, HB, Tetrahedron 1964, 20, 2431
- 11 (a) Levy, G C, Lichter, R L and Nelson, G L, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd Ed, John Wiley & Sons, New York, 1980 (b) For rosane diterpenoids ¹³C-NMR data see Pinto, A C, Garcez, W S, Ficara, M L G, Vasconselos, T C, Pereira, A L, Gomes, L N, Frechiani, M C and Patitucci, M L, An Acad Brasil Cienc 1982, 54, 103
- 12 Enzell, CR and Ryhage, R, Arkiv Kemi 1965, 23, 367
- 13. Audier, HE, Bory, S, Fetizon, M and Anh, NT, Bull Soc Chum Fr 1966, 12, 4002
- 14. Coates, R M in Fortschritte der Chemie Organischer Naturstoffe, Vol 33, p 73, Herc, W, Grisebach, H and Kirby, G W, Ed, Springer-Verlag, Wien, 1976
- 15. (a) Fourrey, J, Polonsky, J and Wenkert, E, Chem Commun 1969, 714 (b) Edwards, O E and Mootoo, B S, Can J Chem 1969, 47, 1189
- 16 Pascual Teresa, J de, San Feliciano, A and Barrero, A F, An Quim 1973, 69, 1065
- 17. Cockerill, A F and Rackham, D M, Tetrahedron Lett 1970, 59, 5149